
Generating Repudiable, Memorizable and Privacy
Preserving Security Questions using the Propp

Theory of Narrative

Lei Pan
School of Information Technology

Deakin University
Melbourne, VIC, Australia
Email: l.pan@deakin.edu.au

Shaun Bangay
School of Information Technology

Deakin University
Melbourne, VIC, Australia

Email: shaun.bangay@deakin.edu.au

Abstract—Security questions are often based on personal
information that is limited in variety, available in the public
record and very difficult to change if compromised. A personal-
ized folktale shared only by the communicating parties provides
memorizable basis for individualized security questions that can
be readily replaced in the event of a security breach. We utilize
the Propp theory of narrative to provide a basis of abstraction for
story generation systems. We develop a proof-of-concept system
based on placeholder replacement to demonstrate the generation
of repudiate and memorizable questions and answers suitable for
online security questions. A 3-component protocol is presented
that demonstrates the use of this process to derive a shared
secret key through privacy amplification. This combination of
story generation and communication security provides the basis
for improvements in current security question practice.

I. INTRODUCTION

Reeder and Schechter [18] identify several causes leading
to failures of currently used security questions:

• The context of security questions does not apply to a
user.

• Users are likely to forget the content or formatting of
the answer that was selected at setup time.

• The adversary may have partial knowledge of user’s
personal information.

• The correct answers are highly guessable because they
are common knowledge.

• The correct answers are researchable because they are
found online or by asking someone who knows the
answer.

Some of the above causes are mutually effected, and many
researchers might overlook that the setup of security questions
and the selection of answers are a form of chicken-egg
problem. Most readers will have seen at least one of these
questions — “What is your mother’s maiden name?”, “What
was the name of your third grade teacher?”, “In what city did
you meet your spouse?”, and “What was the name of your first
pet?”. More pessimistically, many sites reuse variations on a
small set of similar questions. While some service providers
allow their users to freely set their own security questions many
users use personal information as answers to these questions.

In principle, poorly designed security questions often suffer
from high false positive and false negative rates — the former
is caused by “low entropy or public availability of information”
[8], and the latter is caused by ambiguity [20]. Hence, highly
usable security questions and their answers must protect user’s
privacy and security according to Just [9].

A user’s personal information can be collected or inferred
from available public records. For instance, Maltego [16] and
Social Engineering Toolkit (SET) [11] enable villains to collect
personal information from Facebook, Twitter, eBay, Amazon,
YouTube, blog sites, and other sites. Moreover, old tricks
such as dumpster diving, wardriving and phishing still post
persistent threats to private information. Furthermore, personal
information cannot be revoked, repudiated or replaced if there
is any compromise of the site containing stored answers.

With the increasing deployment of security questions, the
protection of these security questions and users’ answers are
unclear. “During this lost decade, little innovation occurred in
addressing cyberthreats while the adversary has significantly
outpaced cybersecurity defenses to the point where most are
obsolete”, according to Gosh and McGraw [4].

In this paper, we propose an approach to generate and
apply repudiable and privacy preserving security questions.
In particular the answers should be memorizable given that
security questions are typically invoked as a last resort. We
assume that no extra security device or biometric information
is used in this context. Adversaries possess similar context
to that of the user and are capable of eavesdropping and
injecting information on communication channels. Instead of
introducing any new cryptographic scheme, we use the existing
universal hashing protocol in the privacy amplification context
[13] with necessary modifications. Therefore, our research
question is composed of the following issues:

• How do we generate repeatable questions and answers
without using any personal information?

• How do we assist ordinary Internet users to memorize
a series of questions and answers?

• How do we secure the exchange of shared secret
between a user and a server?

2

To address the above issues, we generate folktale-like
stories which are made up of disposable and non-sensitive
information. We procedurally generate security questions and
answers based on the generated stories so that the user needs
to only recall the content of the background story. We achieve
transmission of secrets over public channels in the presence of
adversary. Hence, our contributions are three-fold:

• A narrative generation approach that creates a dis-
tinctly unique story for each user, with memorizable
elements and can be represented in a compact form.

• Mechanisms for question generation that can be cus-
tomized to produce levels of information suitable for
user validation and secret key exchange.

• A case study containing the process of integrating a
background story, security questions and an extended
modification of a well recognized secret key sharing
protocol.

This paper is organized as follows: Section II surveys
the existing literature to justify the research opportunity and
identify relevant technologies; Section III introduces the Propp
theory of narrative used for story representation and generation
to the readers who are unfamiliar with story generation. Section
IV proposes a three-component protocol — the first component
generates a background story by using the Propp theory of
narrative [17]; the second component derives a random list
of security questions and expected answers based on the
background story; and the third component uses the user’s
answers as basis of authentication and secret exchange by
extending a universal hashing protocol introduced by Maurer
and Wolf [13]. Section V presents a case study demonstrating
the application of our protocol and significant conclusions are
provided in Section VI.

II. LITERATURE REVIEW

Jakobsson et al. [8] advocate that “Good security ques-
tions should be based on long-lived personal preferences and
knowledge, and avoid publicly available information.” Though
the questions from online matchmaking sites are effective to be
used as security questions concluded in [8], the compromise of
their answers would came at a great cost to users. To overcome
this shortcoming and maintain the effectiveness of security
questions, we propose to use generated stories containing no
personal information as the source of security questions.

Story generation research drives understanding of the struc-
ture of narrative and provides procedural content generation
for interactive fiction and video games. Several strategies that
are used to generate stories include planning approaches [6],
[19] that develop world and character state to meet defined
goals, recombination of existing story elements [3], [6] and
grammatical approaches [7] that reconstruct fresh narrative
from an abstract representation of story structure. Grammatical
approaches are well suited to rapid generation of stories. The
morphology developed by Propp abstracts a common structure
to Russian folktales and is frequently used by story generation
systems [3], [7]. Case based reasoning is proposed in the
ProtoPropp system [3] to select and adapt stories that are
similar in a Propp function based feature space.

Explicit use of Propp’s morphology is present in several
online story generators including the Proppian Folktale Outline
Generator [23], on which our system is based. This generator
encodes the dependencies between functions but only returns
the function listing without instantiating the elements of the
story. A key technique of text generation is substitution. In
particular, Topkara et al. [24] apply the synonym-substitution
method to select and replace phrases of natural language text
by predefined codewords.

Recall of specific items of information uses memorization
strategies or mnemonics that encourage long-term retention.
Stories and particularly folk-tales exhibit mnemonic resilience
[15] by being passed down verbally across generations. Se-
mantic encoding training such as sentence and story generation
improves recall ability [12]. Story narratives are an effective
way of improving recall of word lists even days after the
original sighting [7]. In the context of information security, a
positive correlation between memorability and education level
has been reported [10].

Distinctive imagery increases memorability. Bizarre im-
agery, particularly in the context of common material, ensures
that the concept remains distinct from other information in
memory [14]. Use of these elements in counterintuitive ways
should be avoided [15]. We apply this principle by using a
familiar story structure with unusual and novel elements.

We need to protect the security of security questions and
answers which are transmitted across the Internet. Perfect
secrecy can only be achieved if the length of this key is
at least as long as the message to be communicated on an
untrustworthy message channel accessible to adversaries [21].

Privacy amplification is one of the recent breakthroughs in
communication security. Formally, Bennett et al. [1] define
privacy amplification as “the process that allows two par-
ties to distill a secret key from a common random variable
about which an eavesdropper has partial information”. More
specifically, Alice and Bob publicly agree on a function
h : S → {0, 1}r for a suitable r and compute the r-bit secret
key S′ = h(S). Privacy amplification holds if the probability
of selecting a function h with the following universal property
—

Definition 1: A class H of functions A → B is universal
if, for any distinct x1 and x2 in A, the probability that h(x1) =
h(x2) is at most 1/|B| when h is chosen at random from H
according to the uniform distribution. [2]

In conclusion, to protect the users’ secrecy and privacy
whilst using security questions three components should be
considered at once — a memorizable background story, se-
curity questions and answers derived from this story, and a
communication protocol supporting privacy amplification.

III. PROPP THEORY OF NARRATIVE

Propp [17] identifies a structure common across an entire
class of narrative; in this case the class of Russian folk-
tale. Common plot pattern recur across many stories, each
representing a common theme adapted to the context of the
particular story. Key elements of Propp’s abstraction are:

• An enumeration of the functions of the dramatis
personae with respect to their roles in the story. The

3

actual instance of a particular role is the element
that differs between stories. For example, a villain
may be a dragon, group of bandits, witch or evil
stepmother. Roles are also allocated to inanimate items
that contribute to the story such as magical items that
can assist in overcoming obstacles.

• A set of functions defining the acts of the characters
that contribute significantly to the development of the
story. For example, function 8: “the villain causes
harm to a member of the family” applies when “a
dragon kidnaps the tsar’s grandmother”. Instantia-
tion of the function specifies the mechanism used to
achieve that function.

Propp’s analysis of Russian fairy tales shows that each pro-
gresses through a small sequence of states from a common
set which still creates a wide variety of distinctive stories.
This abstraction is limited to the folktale template. Similar
abstractions exist for other genres (such as movie scripts [22])
and can be used to present stories in other multimedia formats
[5].

Propp’s theory [17] separates complex attributes of charac-
ters and functions such that character archetypes serve as stable
elements in a tale, independent of how and by whom they are
fulfilled. The number of functions is finite; specifically, Propp
defines 32 story functions. Constraints have been developed
based on analysis of the use of functions in existing folktales.
For example, all stories provide the initial situation
but only some will proceed through to the final wedding
function (other may terminate when the hero dispatches the
villain with extreme prejudice). Some functions operate in
pairs: Function 23 “unrecognized arrival” of the hero
in disguise is traditionally followed by an unmasking with
function 27 “recognition”. Some functions can be re-
peated; for example when the hero encounters and solves a
sequence of difficult tasks. Generation of valid stories requires
that these conventions be respected.

Through the above scheme, Propp suggest that “a wide
range of substitution of certain variations for others can be as-
certained on the whole” [17]. This philosophy of construction
using substitution subject to constraints provides a foundation
of our algorithm. The details of our story generator are in
Section IV-A.

IV. OUR PROTOCOL

Our protocol consists of three parts — the first algorithm
generates a background story B according to Propp theory;
the second algorithm outputs a template of multiple choice
questions denoted as T which consists of a list of questions
Q and the predicted answers P ; and the third algorithm is to
distill shared secrets between user and server. Story is private
to the client and server; security questions are private to the
server, and a selection is revealed to the client on demand. The
mapping of the three algorithms and corresponding sections is
depicted in Figure 1.

The story generation algorithm is executed least frequently.
A new story is created when a user establishes an online
account on the server and shared between the user and the
server at that time. A new story may be created if the server is

SERVERCLIENT

Background story B is generated and shared by both user and server

Generate a multiple choice template T

with security questions Q and predicted

answers P

Answer the security questions Q

by choosing P from T

Send a tuple message (h,a,u) to server

Authenticate user with a' by using h

value received and local copy of S

Send user a verification string v by

using received u and local copy of S

Exchange message to initiate secret key generation

Shared secret key S' is generated by using h value and part of S on both parties

Secret string S is derived by converting the selected answers P to a binary string

Verify whether v matches v' caluated by

using local copies of u and S

Section IV-A

Section IV-B

Section IV-C

Fig. 1. The Framework of our Protocol

compromised and fresh security question context is required.
The security question generation and secret sharing algorithms
can be executed on demand. Moreover, the total secret string
S is converted from the predicted answers P arranged in the
queried order which is agreed by the user and the server.
We denote the shared secret key as S′. In the cryptographic
viewpoint, S is regarded as plain text and S′ as encrypted
cipher. According to information theory, the length of S′ must
be smaller than the length of S so that len(S)− len(S′) must
be equal to the amount of information the adversary has about
S plus a security parameter. The security parameter ensures the
adversary’s knowledge of S′ less than the Rényi entropy of S.
Consequently, the success probabilities of any impersonation
attack or substitution attacks launched by the adversary are
upper-bounded as shown in Definition 1.

A. Generating Background Story

A story is generated by the server and provided to the
user securely. The server retains sufficient state information to
recreate a set of questions and answers about the story that
can be used as security questions. The user is expected to
memorize the story so that the story content represents a shared
secret. We use regular expressions for story generation using
the structures identified under Propp theory. The generation
process proceeds as follows: 1) A subset of the 32 Propp
functions are selected for inclusion in the story. 2) A constraint
checker ensures that dependencies between functions are sat-
isfied. 3) A story element is chosen for each function. The
story element consists of text describing the activity within the
function. This text contains placeholders. 4) All placeholders
are instantiated by choosing an element at random from an
appropriate list. Once a placeholder is instantiated the same
value is used for all subsequent substitutions. 5) The story is
generated by concatenating the resulting story elements after
placeholder substitution.

As an example, the functions chosen may include 0:
initial situation and 2: interdiction. Associated
story elements are: α1: “Once upon a time there was a $protag-
onist.” and γ1: “The $family had always warned $protagonist:

4

$interdiction.”. These story elements contain 3 placeholders:
protagonist, family and interdiction. If these are
assigned values “brave, young girl”, “elderly aunt” and “stay
away from the sinister oak forest” then the resulting story will
start with: “Once upon a time there was a brave, young girl.
The elderly aunt had always warned brave, young girl: stay
away from the sinister oak forest.”

This approach avoids the natural language generation
problem encountered with grammatical and ontological based
systems. We require a highly varied story both in terms of
structure and of content. The narrative is confined to plot
outlines typical of folktales. The regular expression mechanism
produces a number of explicitly available values that can be
queried in order to determine context shared between user and
server.

The reader may notice the elaborate and quirky phrasing
used in the values for placeholders in the examples shown. This
is a deliberate attempt to enrich the information associated with
each placeholder and the bizarreness; both intended to increase
the memorability of the value.

We develop two principles to ensure that story elements
produce relevant content when placed in the story: 1) Text
for each story function should be stateless, in that almost
any function may be the first line in the story. References to
past events, other than through using placeholders should be
avoided. 2) All placeholders relevant to that function should be
present in the story text, since there is no guarantee that they
occur elsewhere. This also ensures that all these elements are
instantiated at this point and are available for use in questions
about that function.

A single story represents shared state between user and
server. This state can be completely defined by 1) the speci-
fying the choice of functions used in the story, 2) which story
elements are used in each function, and then 3) the value of the
placeholders used across those textual elements. The text of the
story can be reliably reproduced from this state information.
We disallow repetition of story functions in order to avoid
ambiguous stories or queries. This differ from the stories
described by Propp theory [17] which enables repeated plot
elements. We believe that duplication may incur user confusion
of the story. That is, questions about that one instance of
the function may overlap with other instances resulting in
ambiguity with respect to the answer which contradicts our
aim of generating memorizable security questions.

B. Generating Security Questions and Answers

Generated questions can query values related to particular
dramatis personae or of the activity associated with an indi-
vidual function. Thus a simple question queries the particular
choice of placeholders in a specific story element. One of our
generated security questions is “What had elderly aunt always
warned brave, young girl about?” And the answer should be
“stay away from the sinister oak forest” which is the value of
the placeholder interdiction.

The number of functions used in the story can be chosen
to ensure that there is sufficient content to generate a suitable
number of security questions. We aim to generate a dozen or
so security questions at a time, as indicated by experimental

results in [8] where 10 to 16 security questions should be used
to effectively distinguish legitimate users without incurring
high false positive rate.

Our story generation algorithm in Section IV-A instantiates
a series of Propp function fi alongside with ki placeholders.
We use the following categories of security questions for each
Propp function fi:

1) The simplest type of query asks for the value of the
placeholder at position j in function fi. For example,
given a story function fi as “The $protagonist pro-
ceeds to the lair of the $antagonist.”, the question
can ask: “Who went to the lair?”. In theory, we
can construct maximally ki unique queries in this
category if the function description is sufficiently
detailed.

2) More complex queries ask for the value of a place-
holder in relation to the value for another placeholder.
For example, given fi as “The $protagonist proceeds
to the lair of the $antagonist.”, the question can ask:
“Whose lair did the $protagonist visit?”. In theory, we
can construct maximally ki× (ki−1) unique queries
in this category.

We can obtain at least one security question from every Propp
function. These questions are unique as long as each Propp
function contains at least one placeholder. The number of
questions available is within the range [f,

∑f
i=1 k

2
i] for f

Propp functions.

Each question answer is expected to be the value associated
with a particular placeholder. When generating the questions,
we instantiate placeholders containing the text for the question
and answer. A series of incorrect answers are generated by
querying the story generation system for other valid values
of the answer placeholder. If ni incorrect choices are created,
then the answer to the question provides log2(ni + 1) bits
of information. Furthermore, an unlimited number of security
questions can be created from Propp functions using a diverse
set of placeholders. In Section IV-C, we will use the answers
to provide the secret string S as basis for authentication and
as the input for privacy amplification.

C. Deriving Shared Secret Key by Using Privacy Amplification

By using the security question generation algorithm de-
scribed in Section IV-B, the user and the server agree on a
context string S which contains the information of the answers.
Because of the potential leak of information by transmitting
the string S over a public channel, we need to reveal least
amount of information of the string S each time when it is
used. We apply privacy amplification which is transforming
the partially secret string into a virtually secret key S′.

Specifically, the server determines two values n and l
such that 3 divides n, and l divides 2n/3. Based on these
parameters, the server generates a number of security questions
whose answers can be represented as an n-bit string. After
the security questions are chosen, the user will answer these
questions so that the secret string S is agreed by the user and
the server. Then, our shared secret key algorithm is defined as
follows:

5

1) Both the user and the server split the n-bit string S
into three parts SI , SII , SIII each of which has n/3
bits.

2) The user randomly proposes a privacy amplification
seed h ∈ GF (2n/3). And then the user calculates
authentication string a by hashing this value and part
of the secret string a = h · SI + SII in GF (2n/3).
Similarly, the user randomly generates a verification
seed u ∈ GF (2l). After the three values h, a, u are
ready, they are sent to the server.

3) The server receives the message sent in step 2. The
server evaluates the authentication string a′ = h ·
SI + SII by using received h value and the server’s
copy of S. The calculation is made in GF (2n/3). If
a == a′, then the server accepts the received h as
the privacy amplification seed; otherwise, the user is
notified to repeat step 2. Then the server calculates a
verification string v = fu(SI ||SII) in GF (2l). The
verification string v is sent to the user.

4) The user calculates v′ = fu(SI ||SII) in GF (2l). If
the received message v matches the calculated value
v′, then the user send a success message to the server.
Upon the receipt of this message, the server sends an
acknowledgement message.

5) Once the message in step 4 is acknowledged, both
the user and the server derive the r-bit shared secret
string by taking the r least significant bits of h ·SIII

in GF (2n/3), that is, S′ = LSBr(h·SIII); otherwise,
the server and the user restart step 2.

Our shared secret key algorithm is similar to the Protocol
UH (Universal Hashing) in [13]. Both algorithms transmit the
same amount of information regarding h, a, u and v values.
However, our algorithm differs from the Protocol UH in terms
of the actions when validators mismatch and the time when the
shared secret keys are derived. Our algorithm has advantages
over the Protocol UH in the context of mutual authentication
between the user and the server — 1) The lack of notification
message defined in Protocol UH implies that communication
party may enter into a non-deterministic state which may
introduce severe security vulnerabilities. Our algorithm avoids
this pitfall by introducing the error message which enables
both user and server to fall back to a specified step if any error
occurs. 2) We derive the shared secret key in the last step after
the mutual authentication is accomplished between the user
and the server; however, Protocol UH generates temporary
shared secret keys before the mutual authentication, which
requires extra effort in securely erasing the temporary keys.

Additionally, the background story should be regenerated
given one of the following conditions —

• Either the server or the client requires to repudiate the
shared secret which is currently used.

• The security questions have been exposed to users
completely or over a predefined threshold.

• The server has been compromised.

This section defined our protocol. To demonstrate its ap-
plication, we apply our protocol in a case study in Section
V.

V. A CASE STUDY

Supposing that a server determines n = 24 and l = 4, we
distill a r = 6 bit shared secret key. Based on these parameters,
the server generates a story containing the placeholder values
listed in Table I.

Placeholder Value
king “tsar”
possessivepronoun “her”
pronoun “she”
family “$elders”
elders “grandmother and grandfather”
venue “a magical garden”
lossaction “perform community service”
royalreward “a job in upper-management”
protagonist “brave, young girl”
conflict “a wet T-shirt competition”
home “the royal palace”
reward “lots of hugs and kisses”
excursion “were collecting wood in the dark forest”
antagonist “dragon”

TABLE I. PLACEHOLDER VALUES OF OUR GENERATED STORY

Our story generating algorithm in Section IV-A outputs
the following story according to the above placeholders and
their values: Once upon a time there was a tsar and the tsar
lived with grandmother and grandfather in the royal palace.
The grandmother and grandfather were very precious to the
tsar. The grandmother and grandfather were collecting wood
in the dark forest. The grandmother and grandfather decide
to stay overnight in a magical garden. The grandmother and
grandfather are kidnapped by a dragon. The call for a hero
is issued. A brave, young girl responds to the call for help.
The brave, young girl proceeds to the lair of the dragon. The
brave, young girl engages in a wet T-shirt competition with the
dragon. The dragon is defeated and had to perform community
service. The grandmother and grandfather was freed and gave
the brave, young girl lots of hugs and kisses. The brave, young
girl accompanied the grandmother and grandfather on their
return to the royal palace. The grateful tsar rewarded the
brave, young girl with a job in upper-management.

Following our question generation procedure, we obtain
12 randomly generated questions and their correct answers.
The 12 questions, the correct answers and the associated
placeholders are listed in Appendix A. To demonstrate the
derivation of the secret S without affecting readability, we list
the multiple choice format of the first four questions Q1, Q2,
Q3 and Q4 the correct answers of which are used to construct
the 8-bit binary string SI .

Q1 Who were very precious to the tsar?
A wife, a son and a daughter
B horse, a dog and a sparrow
C grandmother and grandfather
D five lovely mistresses

Q2 Who were collecting wood in the dark forest?
A wife, a son and a daughter
B three daughters
C grandmother and grandfather
D five lovely mistresses

Q3 What excursion did the grandmother and grandfather go on
at the beginning of the story?

A were collecting wood in the dark forest

6

B travelled to visit distant family
C took a trip to Disneyland
D went for a walk in the grounds

Q4 Where did grandmother and grandfather decide to stay when
they were collecting wood in the dark forest?

A a grubby motel
B a magical garden
C a gingerbread house
D a far pavilion

The correct answers are C, C, A, and B. We translate the
answers by replacing choice A with “00”, B with “01”, C with
“10” and D with “11”. Hence, our SI becomes 10100001.
Similarly, the subsequent two secret strings become SII =
00111101 and SIII = 01001011. Thus the entire secret string
S becomes 101000010011110101001011.

Now we show a case of successfully distilling and exchang-
ing 6-bit shared secret between the user and the server.

1) The user randomly proposes a privacy amplification
seed h = 00000010 in GF (28). Then the user
calculates the authentication string a = h·SI+SII =
01100100 in GF (28). Similarly the user randomly
generates a verification seed u = 1010 in GF (24).
The user send the three values h, a, u to the server.

2) The server evaluates the authentication string a′ =
01100100 by using received h = 00000010 and the
server’s copy of SI and SII . The calculated value
matches the value a sent by the user. Then the server
derives the verification string v = fu(SI ||SII) =
1010 by multiplying u and the server’s copy of SI

and SII in GF (24). The verification string u is sent
to the user.

3) The user verifies v′ = fu(SI ||SII) = 1010 by
multiplying u and the user’s copy of SI and SII in
GF (24). Since the two verification strings v and v′

are identical, the user sends a success message to the
server before generating the shared secret key.

4) Once the user receives an acknowledgement message
from the server, both the user and the server derive
the 6-bit shared secret key S′ = LSB6(h · SIII) =
010110 by multiplying h and their own copies of
SIII in GF (28).

This case study demonstrates sharing a secret key between
the user and the server. Our protocol is light-weight — our
background story is made of 14 placeholders; 12 security
questions are created in multiple choice format; and a 5-
step process is applied to derive a shared secret key. For
demonstration purposes, we only generate a short key sequence
which should be prolonged for real-world implementation.
That is, the shared secret can be algorithmically scaled up to
an adequate length by adding more placeholders, more security
questions, or more incorrect choices in each security question.

In practice, the process may be prolonged due to the pos-
sibility that the user may provide wrong answers by accident
or by malicious attacks. A suitable threshold value can be
chosen in case the genuine user makes a few mistakes. An
upper-bound of incorrectly answered questions can be set to
flag attacks. A new background story can be generated once
all the security questions are used. Furthermore, a replay
attack can be prevented by regenerating the story after the

security questions are used. Moreover, the prevention of man-
in-the-middle attacks is beyond this paper’s scope because the
machine-level end-to-end communication can be protected by
existing solutions such as SSL or TLS-based VPN tunnels.

VI. CONCLUSION AND FUTURE WORK

We have identified the need to separate personal privacy
from security questions. We propose a practical and effective
solution to generate effective and reliable security questions
by using fictitious information. To make such information
memorizable, we take the advantage of the Propp theory
of narrative to generate background stories and develop a
regular expression based story generation algorithm that can
be readily queried for security questions. By considering user’s
privacy and security at once, our protocol meet the usability
requirements recommended by [9]. We extend the universal
hashing protocol in [13] by introducing error and success
messages and by generating the shared key only after the
authentication and verification. Our protocol enhances mutual
authentication and secret sharing between the user and the
server with repudiable and memorizable content by integrating
story generation with communication security.

Future work includes a user study evaluating the mem-
orability of stories used in this context. This evaluates the
issues involved in recalling significant events in plain text
stories as opposed to memorizing long passwords. Specifically,
we plan to improve the composition of security questions to
balance usability and security. In the long term we would
like to implement our protocol as a cloud-based secondary
authentication mechanism.

REFERENCES

[1] C.H. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized pri-
vacy amplification. IEEE Transaction on Information Theory, 41:1915–
1923, December 1995.

[2] J.L. Carter and M.N. Wegman. Universal classes of hash functions.
Journal of Computer System Science, 18:143–154, 1979.

[3] P. Gervàs, B. Dı̀az-Agudo, F. Peinado, and R. Hervàs. Story plot
generation based on CBR. Knowledge-Based Systems, 18:235–242,
2005.

[4] A. Ghosh and Gary McGraw. Lost decade or golden era: Computer
security since 9/11. Security Privacy, IEEE, 10(1):6–10, 2012.

[5] K. Glass and S. Bangay. A method for automatically creating 3d
animated scenes from annotated fiction text. IADIS International
Journal on Computer Science And Information Systems, 4:103–119,
2009.

[6] R. Hervàs, R.P. Costa, H. Costa, P. Gervàs, and F.C. Pereira. Enrichment
of automatically generated texts using metaphor. In 6th Mexican
International Conference on Artificial Intelligence (MICAI-07), pages
944–954, 2007.

[7] R. D. Hill, C. Allen, and P. McWhorter. Stories as a mnemonic aid for
older learners. Psychology and Aging, 6:484–486, September 1991.

[8] M. Jakobsson, E. Stolterman, S. Wetzel, and L. Yang. Love and
authentication. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pages 197–200, 2008.

[9] M. Just. Designing and evaluating challenge-question systems. Security
Privacy, IEEE, 2(5):32–39, Sept 2004.

[10] K. Kato and V. Klyuev. Strong passwords: Practical issues. In Intelligent
Data Acquisition and Advanced Computing Systems (IDAACS), 2013
IEEE 7th International Conference on, volume 02, pages 608–613,
2013.

[11] D. Kennedy. Social engineering toolkit. http://www.social-engineer.
org/framework/Computer Based Social Engineering Tools:

Social Engineer Toolkit %28SET%29, 2014. [Software].

7

[12] B.A. Kirchhoff, B.A. Anderson, D.M. Barch, and L.L. Jacoby. Cogni-
tive and neural effects of semantic encoding strategy training in older
adults. Cerebral Cortex, 22:788–799, 2012.

[13] M. Maurer and S. Wolf. Secret-key agreement over unauthenticated
public channels — part iii: Privacy amplification. IEEE Transaction on
Information Theory, 49:839–851, April 2003.

[14] M. A. McDaniel and G. O. Einstein. Bizarre imagery: Mnemonic
benefits and theoretical implications. Advances in psychology, 80:183–
192, 1991.

[15] A. Norenzayan, S. Atran, J. Faulkner, and M. Schaller. Memory and
mystery: The cultural selection of minimally counterintuitive narratives.
Cognitive Science, 30:531–553, 2006.

[16] Paterva. Maltego. http://www.paterva.com/web6/products/maltego.php,
2014. [Software].

[17] V. Propp. Morphology of the Folktale. University of Texas Press, 2
edition, 1978.

[18] R.W. Reeder and S. Schechter. When the password doesn’t work:
Secondary authentication for websites. Security Privacy, IEEE, 9(2):43–
49, 2011.

[19] M.O. Riedl and C. Leon. Generating story analogues. In Proceedings
of the 5th Artificial Intelligence and Interactive Digital Entertainment,
2009.

[20] S. Schechter, A.J.B. Brush, and S. Egelman. It’s no secret. measuring
the security and reliability of authentication via ‘secret’ questions. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 375–390,
2009.

[21] C. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28:656–715, 1949.

[22] B. Snyder. Save the Cat! The Last Book on Screenwriting You’ll Ever
Need. Michael Wiese Productions, 2005.

[23] Stone Dragon Press. Russian folktale outline generator. http://www.
stonedragonpress.com/vladimir propp/propp generator v1.htm, 2014.
[Online; accessed 10-May-2014].

[24] U. Topkara, M. Topkara, and M.J. Atallah. The hiding virtues of
ambiguity: Quantifiably resilient watermarking of natural language text
through synonym substitutions. In Proceedings of the 8th Workshop on
Multimedia and Security, pages 164–174, 2006.

APPENDIX A
TWELVE GENERATED QUESTIONS AND THEIR ANSWERS

The following 12 questions are automatically generated
by our Python script; the answers are retrieved from the
corresponding placeholders —

Q1 “Who were very precious to the tsar?” The correct
answer is “grandmother and grandfather” which is
equal to the value of the placeholder $family.

Q2 “Who were collecting wood in the dark forest?”
The correct answer is “grandmother and grandfa-
ther” which is equal to the value of the placeholder
$family.

Q3 “What excursion did the grandmother and grandfather
go on at the beginning of the story?” The correct
answer is “were collecting wood in the dark for-
est” which is equal to the value of the placeholder
$excursion.

Q4 “Where did grandmother and grandfather decide to
stay when they were collecting wood in the dark for-
est?” The correct answer is “a magical garden” which
is equal to the value of the placeholder $venue.

Q5 “Who stayed in a magical garden?” The correct an-
swer is “grandmother and grandfather” which is equal
to the value of the placeholder $family.

Q6 “Who kidnapped the grandmother and grandfather?”
The correct answer is “dragon” which is equal to the
value of the placeholder $antagonist.

Q7 “Who was kidnapped by the dragon?” The correct
answer is “grandmother and grandfather” which is
equal to the value of the placeholder $family.

Q8 “Who responded to the call for help?” The correct
answer is “brave, young girl” which is equal to the
value of the placeholder $protagonist.

Q9 “How did the brave, young girl battle the dragon?”
The correct answer is “a wet T-shirt competition”
which is equal to the value of the placeholder
$conflict.

Q10 “What did the dragon do after being defeated?”
The correct answer is “perform community service”
which is equal to the value of the placeholder
$lossaction.

Q11 “What did the grandmother and grandfather give
the brave, young girl for saving them?” The correct
answer is “lots of hugs and kisses” which is equal to
the value of the placeholder $reward.

Q12 “Who gave the brave, young girl a job in upper-
management?” The correct answer is “tsar” which is
equal to the value of the placeholder $king.

