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Abstract 
Our goal is to develop a strategy for procedurally producing realistic scenes. This requires the 

ability to rapidly produce large but non-repeating synthetic terrain. We also address the problem 

of evaluating synthetic terrain in terms of realism and propose a strategy for linking all 

procedurally generated environmental content into a single framework. 

The procedural terrain generation framework uses Wang tiles to generate and combine all of the 

different types of procedural content required to produce a game world. Tilesets of terrain data 

are created from exemplar data and placed to produce large, varied and potentially infinite 

terrain. While we concentrate on the production of elevation data, we also provide a framework 

for adding other forms of procedurally generated environmental content by extending the 

process using layered tiles. 

Our results show that Wang tiles represent a strategy for creating synthetic terrain that retains 

properties of the original exemplar data. Memory overheads can become substantial and 

represent a trade off that must be considered in conjunction with the variation in the generated 

terrain. 
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1. Introduction 
Game worlds are large vivid landscapes that facilitate game play by giving the player an area to 

explore and play the game in. These worlds are a key part of a game. 

Our goal is to develop a strategy for procedurally producing realistic scenes that can be 

incorporated into a modern game engine. 

This involves finding solutions to the following sub-problems: 
1. How can we produce the terrain procedurally but with user control? 
2. Can we produce large (potentially unbounded) non-repeating terrain? 
3. Can we do it at a speed that allows real-time exploration of the terrain? 
4. How can we incorporate all elements of terrain: height, vegetation and other surface 

elements into the process? 
5. How do we evaluate the quality of the resulting terrain? 

1.1 Background and Motivation 
There are two different methods of content creation for game worlds, manual creation and 

procedural creation. Manual creation is the act of hand creating the content such as models and 

textures using 3D sculpting and image editing tools. Each feature is then hand placed into the 

game world. This can take a large amount of time, months or even years, and takes a lot of effort. 

The advantage of this approach is that the end result will be exactly what the designer intended it 

to be. 

Procedural creation, on the other hand, uses algorithms to create a vast amount of content 

automatically, and then even place that content in a game world with little or no interaction from 

the user. This saves a lot of time and effort, but it comes at the cost of user control over the 

finished product. The user may have to run the algorithm many times to achieve results even 

slightly resembling what they desire. This paper explores a method of procedural game world 

generation. 

Current day procedural terrain systems can't match up to manual terrain methods because they 

do not provide the flexibility and in depth user control that manual methods provide. There have 

been some great steps in the right direction, but they usually lack in some areas, such as ability to 

create all types of terrains. 

1.2 Outline of Approach 
The method that is implemented in this paper is a Wang tiles based terrain generation algorithm. 

Wang tiles are used because of their ability to potentially work across all forms of game world 

content and create indefinite terrains. It progresses in three main revisions, the initial Wang tiles 

implementation, a revised implementation of the system taking in some of the flaws of the initial 

approach, and a look at using a layered tile approach to incorporate all forms of environmental 

content into the one framework. Each section will discuss the method, the implementation, and 

the results and conclusions. 
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2. Related Work 

2.1 Game Worlds 
The topic of this work is looking at game worlds. So what exactly is a 'game world'? Smelik et al. 

(2008) describe a game world as consisting of two different types of content, man-made and 

naturally occurring. They split these different types of content into 'layers'. The naturally 

occurring content includes:  

¶ Underlying terrain (earth layer) 

¶ Rivers and lakes (water layer) 

¶ Vegetation (vegetation layer)  

The man-made components include: 

¶ Roads (road layer) 

¶ Urban constructs such as cities and farms (urban layer) 

Following this layered model, an in depth look at each layer of the model will be carried out. 

2.2 Underlying Terrain 
Terrain in game engines is usually taken from heightmaps - greyscale images that represent 

terrain, where darker areas are lower areas of terrain and lighter areas are higher. There are 

numerous techniques for creating terrain. 

One of the earliest methods for terrain generation is the use of fractal terrain. This method uses a 

combination of recursive subdivision and fractional Brownian motion (Fournier, Fussell & 

Carpenter 1982). As described in the work by Mandelbrot and Van Ness (1968), fractional 

Brownian motion is an algorithm that generates sample paths based on the previous points in the 

path. It was observed that these sample paths look like a side view of rocky, mountainous terrain. 

Recursive subdivision divides up path segments and displaces the mid points of the segments to 

create terrain that resembles fractional Brownian motion sample paths. 

Fractal terrain has been used for a long time to create generally accepted terrains. However the 

terrain created by this method is inherently rocky in appearance, and closer inspection reveals 

that these terrains do not share the characteristics of real world terrain, including proper 

drainage through rivers and other water systems. 

Efforts have been made to enhance fractal terrains to look more like real world terrain. One such 

technique that has achieved good success is to use erosion to shape the terrain, much like the 

real world. These erosion techniques are described by Musgrave, Kolb and Mace (1989). In this 

work two techniques for erosion simulation are discussed. The first is hydraulic erosion where 

water is 'dripped' onto the terrain and allowed to carry material from one vertex to another. The 

second emulates thermal weathering and involves material being distributed from one vertex to 

another if the angle between them is too high. 

Erosion techniques have had good success in creating believable terrain that contains 

characteristics seen in the real world. These techniques are very slow, requiring tens of thousands 
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of iterations to produce their output (Smelik, RM et al. 2009). This makes these techniques 

inappropriate in cases such as when terrain needs to be generated in real time. 

In more recent years due to the ready availability of real world heightmap data through services 

such as the United States Geological Survey, effort has been made to produce terrain based of 

real world exemplar heightmap data. One such technique proposed by Zhou et al. (2007) creates 

a terrain based off of a real world exemplar and a user sketch of the ridges and/or valleys desired 

in the generated terrain. First the exemplar image is analysed and the basic structure of the 

terrain is found. Using this basic structure, the terrain is cut into patches to represent basic line 

structures such as intersections and straight sections. These patches are then placed so that they 

cover the user sketch, with any sections not covered by a patch being filled in with un-interesting 

sections of terrain from the exemplar. The seams between the patches are then smoothed out 

using a combination of the graph-cut and Poisson solver seam removal techniques. This 

technique creates realistic terrain because it uses real world heightmap data to fill in the areas of 

the generated heightmap. However if the exemplar used does not contain interesting features, 

the generated terrain will not contain interesting features. The technique also only really works 

well on mountainous terrain due to the need to define ridges or valleys. 

2.3 Water Systems 
Water systems include many things such as rivers, lakes, deltas, oceans, etc. An ongoing issue 

with these types of terrain features is how to incorporate them into the underlying terrain 

formation. Real world rivers and lakes are created due to the effects of the underlying terrain. 

Because of this it is hard to determine whether water systems should be generated before 

terrain, after terrain, at the same time as terrain, or if one should be generated around the other. 

It also makes the layered terrain approach (Smelik, R et al. 2008) hard as it strives to abstract 

water systems and underlying terrain into separate layers even though they are so interlinked. 

Another issue with water systems is that not much work has been done on features other than 

rivers (Smelik, RM et al. 2009). In a work by Teoh (2008) he describes a water feature creating 

program to generate other features such as coastline and deltas. However in his work lakes are 

generated by seeding a point and flooding up to a certain height. This is unintuitive and not like 

real world lake formation, where lakes come about as a result of the terrain not being able to 

drain the water it receives at a fast enough rate. 

Rivers on the other hand have been reasonably well explored. One basic method of river 

generation uses recursive subdivision. It starts with a single triangle with one side marked entry 

and another marked exit. This is then recursively subdivided into smaller triangles so that a 

curving river is formed (Prusinkiewicz & Hammel 1993). This creates a visually acceptable river, 

however the method does not take into account the underlying terrain, simply flattening the area 

where the river is going to run through and placing it onto the flat area. This leaves undesired 

visual artefacts in the terrain in the form of large ridges where the terrain suddenly drops straight 

down due to the river cutting through it. 

An example of an integrated river generation method where the rivers and the underlying terrain 

are generated together is presented by Belhadj and Audibert (2005). In this method the ridges are 

first created. Next river particles are placed atop the ridges and allowed to flow down due to 
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physics. The resultant paths are stored as river paths which are used to create the rivers. Given 

the rivers and ridges already created, the rest of the terrain is filled in using fractal methods. A 

good aspect of this method is that it creates rivers based on physics, and real rivers tend to flow 

downhill due to physics. The drawback, however, is that the method is tightly integrated with the 

terrain creation process. The terrain and rivers must be generated together, the river generation 

algorithm cannot be taken out and used with a different terrain generating algorithm and vice 

versa. 

2.4 Vegetation 
Vegetation is a well researched area of world generation, and there are even many commercially 

available tools that can generate a wide variety of visual appealing, realistic vegetation. 

Traditionally vegetation is generated using an L-system grammar replacement approach 

(Lindenmayer 1968). This approach takes a set of rules such as Trunk = Branch + Trunk + Branch 

and recursively performs grammar replacements until an end state is met. 

More recently there has been a section of research that has branched off from the recursive L-

system approach, known as self aware generation (Palubicki et al. 2009). This method uses what 

has already been generated in the plant to decide what to generate next. Factors such as how 

much space is taken up and how much access to light there is are taken into consideration. 

Both L-system and self-aware plant creation processes produce visually appealing, realistic plant 

structures. 

2.5 Urban areas and Roads 
Urban areas and road generation are linked due to urban structures and roads generally being 

built around each other. 

Road generation has been done mostly by using a recursive L-system style of algorithm to fill in 

roads in a grid pattern, with highways connecting the central hubs (Parish & Müller 2001). 

Buildings are then created in the vacant lots left in the road structure. Further to this work there 

has been work done on creation of buildings using an L-system grammar replacement approach 

(Müller et al. 2006). 

2.6 Wang tiles 
Given all of the above methods of procedural content generation, there has been expressed a 

need for a framework that ties it all in together to generate whole worlds (Smelik, R et al. 2008; 

Smelik, RM et al. 2009). 

Also given the previously stated fact in section 2.2 that terrain heightmaps can be regarded as 

images that represent height values, world generation can be seen as an image generation 

problem. With this in mind, image generation techniques are relevant to terrain generation. 

One such technique is known as Wang tiles, which derives its name from work by Hao Wang 

(Wang 1965). Wang tiles are squares with 4 coloured borders. They store image data and are 

arranged in a grid so that adjacent tiles have matching border colours (Stam 1997). Cohen et 

al.(2003) show methods for procedurally generating tiles for texture synthesis by cutting patches 

out of a reference image. 
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3. Tile Based Terrain Synthesis 
Our goal is to rapidly create large, non-repeating terrain. The literature reviewed in Chapter 2 

indicates methods used in image synthesis could be applied to the problem. In particular, the 

Wang tiles approach can be used to generate a large number of pre-computed tiles, and then 

place tiles on the fly, effectively creating large terrains. 

The difference between terrain tiles and texture tiles is that terrain tiles must maintain surface 

continuity. Terrain also consists of several layers, starting with the height values and rivers, 

followed by vegetation, then roads and urban structures. For these reasons the tiling approach 

will need to be adapted to suit a terrain generation problem. 

The remainder of this chapter describes the process used to generate the tiles, and evaluates the 

performance of a terrain synthesis process based on tiling. After each part of the prototype 

solution is implemented, tests will be done to assess the system so far. 

3.1 Wang tiles 
We can produce terrain using Wang tiles as terrains are stored in image data and Wang tiles are 

used to generate images. We can produce large terrains using Wang tiles because all that needs 

to be done to extend the terrain is add some more tiles onto the end of the current terrain. This 

does not require further tile generation as we reuse the tiles that are already generated and 

ready to be used. If we use enough tiles we can potentially get a sense that the terrain is non-

repeating. Adding extra tiles onto the terrain should be efficient with the tiles already generated 

allowing new terrain to be quickly created.  

Referring to the need stated in section 2.1 for a layered world generation algorithm (Smelik, R et 

al. 2008), Wang tiles can be used to tie all facets of world generation in together by using a 

layered tile approach, where each tile is not only related to its neighbours in its layer, but is also 

related the tiles directly above and below it in other layers. 

3.2 Layer Placement 
Tiles are placed with matching colour borders next to each other. 

For the purposes of the tests described in this work, tiles are placed in a grid of tiles known as a 

tile layer. First the layer size is decided by user input. A random tile position in the grid is chosen 

and a fitting tile placed there. If there are multiple possible fitting tiles, then a random one from 

the set of possible tiles is chosen. This is repeated, with another random point chosen and tile 

placed, until the whole layer is filled in with tiles. This random placement of tiles eliminates the 

need for each tile to be dependent on some starting point in the grid. 
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Figure 1 A basic tile layer showing a 5x5 grid with tiles placed with matching borders 

This placement strategy comes from the desire to create large terrains. With tiles completely 

independent on a particular starting point in the grid, tiles can easily be added and an appropriate 

tile chosen to fit the desired grid space. This method is also good because some methods of 

image synthesis have shown that when they have a clear starting point at which to generate 

from, they can start to produce undesired or skewed results as the generated section gets larger 

and larger (Efros & Leung 1999). 

3.3 Tile Creation 
Tiles are created using a process similar to that described by Cohen et al.(2003). Exemplar 

heightmaps are provided by the user that contain desired terrain characteristics. The user also 

defines the size of the tiles to be generated and the amount of border colours that will be used in 

the tileset. 

Using real world terrain exemplar images means that we will only get terrain sections that are 

consistent with realistic terrain. This also provides the ability to generate many styles of terrain. If 

the user provides a flat, plains style exemplar then the algorithm will generate flat, plains style 

terrain, and likewise for rough, mountainous terrain. 

Each tile has four borders. Each border is identified by an integer, which represents the colour 

associated with that edge. Every border colour arrangement is possible, which means that no 

matter how tiles are placed, there will always be a tile that can be placed in the desired grid 

position. 

The exemplar image is then cut up into small diamond shaped terrain patches. These patches are 

big enough so that two opposite ends of the diamond will run from the centre of one tile to the 

centre of an adjacent tile, plus a small amount of excess. This excess will come into play later 

when we look at seam removal in section 3.4. Each patch is assigned a 'colour' which matches one 

of the border colours. When a tile is generated, the program takes each matching colour patch, 
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and places them so that the middle of the diamond runs along the respective coloured border, 

and all of the patches meet in the centre of the tile. The excess sections of each patch that hang 

over the boundary of the tile are discarded so that the tile is now filled in with terrain patch data. 

 

Figure 2 Tiles showing terrain patch placement 

Because of the way the patches are placed, if a tile is placed next to another tile with matching 

border colours, the image will flow smoothly between tiles. However we now have the issue of 

how to remove the seams that are created between tile patch boundaries within each tile. 

3.4 Seam Removal 
The four adjacent patches of terrain data have clearly visible seams between each patch. To 

maintain a smooth consistent terrain we need to remove these seams. 

We start by using a basic seam removal process. This process looks for a best path solution 

through the excess tile patch data that we included earlier in section 4.2. It starts at each corner 

of the tile, choosing a random pixel from those available. The process recursively steps through 

the excess patch data by looking at the neighbouring pixels toward the centre of the tile. At each 

step it compares the neighbouring pixels and chooses the pixel that is closest in height to the 

current pixel. Once the centre has been reached from all four corners, the excess data from each 

patch is discarded and the tile is populated with the final terrain data. 
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Figure 3 Tile showing basic seam solver cutting seams through the patch overlap regions 

3.4.1 Results 

The results of the initial implementation are to be expected. The tile placement works well and a 

layer of tiles can be placed, with a tile available for any border combination. However the main 

drawback of the approach is the tile creation itself. Because of the nature of the patches, the 

basic seam finder tends to simply use the whole of one patch and discard the excess of the 

neighbouring patches. 

 

Figure 4 Results of the basic seam solver 

The seam finder has one other major flaw. Patches of vastly different heights can be placed next 

to each other, which can cause a seam with a large height difference on either side. This is 

unrealistic in a terrain sense. Five trials were done of the basic seam finder using an exemplar 

image of mountainous terrain. The max difference in pixel height of adjacent pixels in the 

exemplar image was thirty five. The average seam difference for each tile on each tile layer was 

measured, with the results below: 

Exemplar 
Max Height 

Exemplar 
Avg 
height 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

35 5.78842 48.401 44.6672 75.7574 57.0462 45.6875 
Table 1 Results from the basic seam solver 

It can clearly be seen that on each trial the average difference of pixels on the seam was higher 

than the maximum difference between pixels in the exemplar, with trial 3 average more than 

double the maximum height. The average pixel difference in the exemplar was 5.78842, with each 

seam far surpassing this average. 
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3.4.2 Conclusions 

From the images provided and the numerical measures given, it can clearly be seen that this seam 

finding algorithm is not good enough. It creates clear seam boundaries along patch edges, which 

have significantly deviant heights, which is unacceptable for terrain. Terrain needs to be 

continuous to be realistic. 
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4 Poisson Seam Smoothing 
We can further reduce the effects of the seam using a different seam algorithm based on the 

Poisson seam solver (Pérez, Gangnet & Blake 2003), a seam solving algorithm previously 

employed for terrain manipulation based on real world exemplar data in the work by Zhou et 

al.(2007). 

4.1 Method 
The Poisson seam solver attempts to smooth an image out over a given seam by adjusting the 

gradients between the points in the terrain grid so that they match up better while maintaining 

the overall structure of the section involved. 

It takes in a mask of the area to be solved, which marks whether a pixel should be changed or not. 

Boundary pixels are marked as a -1 in the mask which tells the solver not to solve for that pixel. 

It also requires a guidance vector field obtained by taking the gradients of each height value to its 

direct neighbours both to the right and below it. Height values on the boundary of the seam have 

their gradients marked to their adjacent boundary values marked as 0 as they have no direct 

neighbour in the terrain patch. This is because we want the gradient over the seam to be as 

smooth as possible, and this way the solver will try to get the seam gradients as close to zero as it 

can, resulting in the smoothest possible seam. This guidance field is used in the calculation as a 

set of goal gradients that the solver tries to find a best fit for. 

The final component is a sparse matrix made up of the value of each pixel and the change in 

height of it and its four direct neighbours. It then solves a matrix inverse to obtain a best possible 

set of gradients that can satisfy the original condition of having a zero gradient over the seam. 

4.2 Application 
The tiles created in section 3.3 have 4 adjacent patches of terrain data that need to be smoothed 

so that the terrain is continuous across the whole tile. 

To apply the Poisson solver method to the tiles the process needs to be changed somewhat. 

Excess height data is no longer required for the patches, as we will no longer be performing a 

cutting algorithm for seam removal, so the tile patches are cut so they fit perfectly together. 

The solver algorithm is taken over each of the 4 seams between terrain patches in the tile. So the 

terrain patches are cut in half from the centre of the tile to the tile boundary and each of the 4 

seam sections are addressed separately as shown in figure 5. 
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Figure 5 Tile showing seam boundaries and seam segment boundaries 

The gradient guidance field is created as described in section 4.1, with each boundary pixel on the 

patches being assigned a 0 gradient between it and the other boundary tiles as illustrated in 

figure 6. This is done because we want to achieve a smooth terrain over the seam, so the flatter 

the gradient the better. 

Next the mask is taken. Each of the boundary values for the seam segments are given a value of -

1 so that they are not solved by the system, as we want to keep these values constant. Having the 

boundary values unaffected means that the tile boundaries still maintain their constraint of 

needing to be continuous across adjacent tiles and represent valid terrain patterns across the 

boundaries. All the other values in the seam section are considered for solving. 

 

Figure 6 Tile showing a representation of the locked mask and gradient field used in the Poisson solver. The gradient 
field is a grid structure of guidance gradients 

All of the seam sections are solved in turn, and the results are placed into their respective 

positions in the tile. Each tile is solved by the system independently, so the patches themselves 

are not edited by the process, as they each have different patch configurations. 

A further improvement on this method for future work could be incorporating the graphcut 

method of seam finding (Kwatra et al. 2003). The graphcut method attempts to find a best fit 

seam through an overlapped seam region by comparing the values of all the pixels involved in the 

seam overlap, like the initial simple seam solver used in chapter 3, but much more advanced. This 

could be used in combination with the Poisson solver to achieve better seams by first finding the 

smoothest path through the seam, then further smoothing it by application of the Poisson solver. 

4.3 Initial Evaluation 
We present a number of examples of tiles created, using the same exemplar sources. For 

comparison we show the tiles without seam smoothing, with seam removal and also using the 

Poisson solver in figure 7. 
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Figure 7 Tiles using different seam types 

Results for individual tiles indicate that the Poisson solver achieves the best results across the 

interior of the tile. However issues occur when a number of tiles are placed together as illustrated 

in figure 8. Because each seam segment is taken and solved individually, with each pixel on the 

boundary of the seam segment being locked, it meant that are tiny sections of the seams at the 

corners of each tile and in the middle where the seam is not solved and therefore still exists. 

 

Figure 8 Example output from the initial Poisson solver implementation 

A more in depth quantitative evaluation is carried out in section 4.5.1, after techniques to resolve 

the issue reported above have been described. This involves measuring the height difference over 

seam boundaries. 
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4.4 Refinement 
Due to the issue of seam artefacts as mentioned in section 4.3, refinements needed to be made 

to the Poisson solver implementation. 

The first refinement is aimed at eliminating the artefact in the middle of each tile. To do this, 

instead of having each seam segment solved individually, the whole tile is taken as a whole and 

solved. This means that the gradient field is extended to cover the whole tile, with gradient 

vectors on the boundaries of seam segments still being set to 0, and the mask is extended to the 

whole tile, with only pixels that sit on the border of the tile being locked in. This refinement 

ensures that the seam artefact in the middle of the tile is smoothed out. 

The second refinement is aimed at eliminating the corner artefacts. This is a difficult issue to 

solve. If the pixels on the edge of a tile are changed, then the tile will not match up perfectly with 

an adjacent tile, so it is highly risky to change the pixels on the edge of a tile. However, due to the 

nature of the problem, if the pixels on the edge of the tile are not solved, then there will always 

be a seam artefact on those tiny points of each tile. This is illustrated in figure 9. We can see how 

the seam pixels join up, with the two seams having highly different pixels. However when the 

Poisson solver is applied, all of the pixels become smoothed out, so that the seam no longer exists 

and the tile contains smooth tiles. However due to the 2 pixels at the very corner being locked in, 

they are not smoothed out with the rest, and this means that they still contain very different 

height data. 

 

Figure 9 A representation of the smoothing process (left) The tile corner before it is smoothed (right) The tile corner 
after it is smoothed 

If the corner pixels of each tile are not solved, then there is a high chance that a visual artefact 

will occur. The risk needed to be taken of including the corner elements in the solving process so 

that any artefacts would be wiped out in a single tile. So the mask for the solver was changed so 

that the 3 pixels making up each corner were no longer locked and were smoothed out with the 

others as illustrated in figure 10. 
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Figure 10 A representation of the improved smoothing process (left) The tile corner when smoothed with the old 
process (right) The tile corner when smoothed with the new process 

4.4.1 Results 

An example of the output from the refined Poisson solver technique is shown below in figure 11. 

 

Figure 11 Example generated with the refined Poisson solver process 

It can be seen that the terrain in each individual tile is nicely smoothed and continuous, and the 

solver does the job of removing seams very well. However when the borders are taken away 

small cross tile artefacts can be seen in the corners of some of the tiles. This could come about as 

a result of the Poisson solver smoothing out the 3 corner pixels of each tile, causing a slight 

inconsistency between some tiles, or as a result of the 3 pixel boundary area that is smoothed not 

being big enough to achieve enough smoothing. These 2 possible causes are very hard to solve. If 
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the boundary that is smoothed is extended to hopefully achieve better smoothing, more 

continuity between tiles will be lost, which is one of the main points of the Wang Tiles system. 

Whereas if the implementation is changed so that the tile corner boundaries are smoothed, it 

would mean needing to create an individual new tile every time a tile is placed, rather than 

having a set tileset, significantly increasing the time taken to place a new tile in the grid. However 

the current system works much better for corners than the original Poisson solver 

implementation, and further refinements to the process will not be explored in this project due to 

time constraints. 

A possible solution to the corner issue and area of future work could be found by using tiles with 

coloured corners rather than coloured edges (Lagae & Dutré 2006). Here terrain patches are cut 

out as squares the size of a tile, instead of diamonds, and placed so that the middle of the patch is 

on the corner of a tile with the same colour as the patch. After all the patches are placed in the 

tile, another diamond shaped section of the exemplar is cut out and placed in the middle of the 

tile so that it covers up the seam boundaries between each patch. This would solve the issue of 

corner artefacts, and due to the way the diamond shaped section is added to each tile, it means 

that each tile could focus on a key terrain point, such as a mountain, ridge, lake or valley. 

However the artefacts currently found at the corners of the tiles may just be moved down to the 

middle of each tile boundary where the patches meet the centre diamond patch. 

4.5 Evaluation of Terrain Synthesis 
Some further results shown by generating heightmaps using different styles of exemplar images 

are shown below in figure 12 for visual reference on how the system performs with different 

styles of terrain. The exemplar images used are forest terrain taken from the Amazon Basin, 

desert terrain taken from the Simpson Desert, and mountain terrain taken from Mount Rainer. 

Tile layer is a 5x5 grid. Tileset contains tiles with a tile size of 64 and 8 different border colours. 
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Figure 12 Example Terrain generated from different styles of exemplar images 

4.5.1 Quantitative Seam Evaluation 

5 trials were conducted to test the seams of the smoothed tiles. The average height difference of 

the pixels on either side of the seam joins over each tile was taken, as well as the average height 

difference for the trial. This trial was conducted with the same exemplar image as the trial 
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conducted in section 3.4.1. The average height difference was taken by running along the seam of 

the tile from the top left corner to the bottom right corner and from the bottom left to the top 

right and subtracting the height value from the right side of the seam from the value from the left 

side and obtaining the absolute value of the result. The average of all these values was then taken 

as the result of each trial. 

Exemplar 
Max Height 

Exemplar 
Avg 
height 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

35 5.78842 3.48277 3.08409 3.6099 2.67428 3.79452 
Table 2 Seam results from the Poisson solver 

Exemplar 
Max Height 

Exemplar 
Avg 
height 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

35 5.78842 48.401 44.6672 75.7574 57.0462 45.6875 
Table 3 Seam results from the basic seam finder from section 3.4.1 

When compared with the results from section 3.4.1, these results show how the Poisson solver 

outperforms the basic seam finder as far as tile continuity is concerned. The solver produces far 

more continuous terrain. The averages of each trial are much closer to the exemplar average 

height than any of the trials from section 3.4.1. These averages are also much lower than the 

exemplar max height, meaning that the terrain is much more realistic as it does not exceed  the 

highest difference between terrain heights possible. 

4.6 Evaluation of terrain realism 
With the tile system implemented at a satisfactory level, there will be 2 tests done to assess the 

realism of the terrain. The first test will be a flood test. This test is designed to see how well the 

terrain drains when flooded with water. The idea behind this test is that real world terrain tends 

to have rivers and other bodies of water that allow water to drain from the terrain out to sea, 

meaning that the terrain does not get flooded. The second test will be a terrain style test to check 

the generated terrain matches the style of the exemplar. For these tests the tile layer will be a 

5x5 grid, the tileset will contain tiles with a tile size of 64 and 8 different border colours. 

4.6.1 Flood Testing 

Real world terrain tends to have rivers and other systems that carry water from the terrain to the 

sea or another body of water. This means that when the terrain is flooded with water, the water 

can run off without continuing to flood the terrain. This effect occurs naturally due to erosion. 

To test the realism of the terrain generated with the Wang tiles algorithm, a flood test has been 

designed. The intention of the test is to show how much of the terrain remains flooded after 

water has been drained from it. The less terrain covered the more realistic the structure of the 

terrain. 

To do the flood test a number of steps are involved. First a water layer is added to the terrain. 

This layer is a grid of flood values that is placed directly above the terrain layer, with a flood value 

for each terrain value. The flood values are populated by subtracting the corresponding terrain 

value from the maximum altitude, giving the height value of the amount of water needed to fully 

flood the section of terrain, illustrated in figure 13. 
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Figure 13 A representation of the flooding process 

Once the flood layer is created it is progressively drained by means of a recursive draining 

algorithm. For each draining pass, if a terrain value is on the edge of the terrain it completely 

empties its water, setting its corresponding flood value to 0. If a terrain value is not on the edge 

of the terrain, then it checks the combined height and flood value of its 4 neighbour values above, 

below, and on both sides of it, finding which of the 4 has the smallest total value. If the neighbour 

with the smallest value is less than the combined flood and height value for the current height 

value, then the current flood value is changed so that it equals the combined flood and height 

value of the smallest neighbour minus the current height value. If this puts the flood value below 

0, the flood value is set to 0. This gives the flood value required to flood the terrain equal to the  

flood height of its smallest neighbour, or sets the flood value to 0 if the total height of the 

smallest neighbour is less than the current height value, essentially draining the water from the 

current terrain point. 

This is illustrated in figure 14 below. 
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Figure 14 A representation of the draining process with each pass 

The flood test was carried out on tile layers generated using  3 different styles of terrain 

exemplars; forest terrain, desert terrain, and mountain terrain. For each terrain type, there will 

be 5 trials conducted. The trials consist of generating a tileset based off of the exemplar that 

contains tiles of size 64 with 8 different border colours. The generated tilesets are then used to 

create tile layers consisting of a 5x5 grid. The flood factor of the 5 trials is then taken. The flood 

factor is the percentage of the terrain that is under water after the flood test has been carried 

out. 

Terrain Type Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Forest 26.7451 33.7686 32.4395 34.9736 31.0879 

Desert 37.8066 36.6172 40.9746 38.8975 41.6875 

Mountain 22.1563 19.4355 21.5088 23.0703 26.8525 
Table 4 Results from the flood tests 

The created terrain ends up with flood residue due to the chopping and changing of the pieces of 

exemplar, with no attempt to carve new rivers and drainage systems that usually occur naturally 

in the terrain. This has the potential to develop large areas of terrain with no way to drain the 

water. Examples of the flooded terrains are shown below in figure 15. 
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Figure 15 Example heightmaps after being flooded with the flood test 

These results show that the less flat a terrain is, the more chance that drainage paths from the 

exemplar will carry over to the generated terrain, whereas the flatter the terrain, the more likely 

water is to get caught in patches of similarly sized terrain with no smaller sections to escape 

through. 

Solutions to remedy this issue are an area of future work. As stated previously, the flood factors 

obtained occur due to the lack of new drainage systems created. This relates back to the layered 

terrain approach mentioned in section 2.1 (Smelik, R et al. 2008). To remedy the issue, a water 

layer would need to be added to add rivers and lakes to the terrain. The problem with this is that 

the water layer would have to alter the look of underlying terrain, and hence would need to 

change it to accommodate for the new water systems used to drain the terrain. These two layers 

could be incorporated into the one layer, with the river creating system used to carve out the 

terrain once it has been generated. 

Due to the nature of the tiles, care would need to be taken to ensure that the algorithm can be 

used on a tile by tile basis and still create effective rivers. This is because the terrain in each tile 

cannot be affected by the terrain in its neighbours, as each tile is a standalone entity. If the tiles 

were affected by the terrain in neighbouring tiles, it would create the need to generate parts of 

the tile as it is placed, relating to its neighbours, and hence create extra work and slow the 

placement process significantly. It would also increase the size of the tileset, as each instance of a 

particular tile would need to be saved separately as its own tile, creating many instances of the 

one tile. 

4.6.2 Terrain Style Testing 

Tiles are created by placing 4 different terrain patches onto the tile and then smoothing the 

resultant terrain so that the seams of the patches match up. This achieves great results in terms 

of smooth continuous terrain, but it involves altering the terrain used. This means that the 

resultant terrain actually differs from the terrain that was taken from the exemplar image. Due to 

the fact that terrain is taken from an exemplar real world heightmap, the terrain needs to stay as 

close as possible to the original exemplar data extracted in order to ensure that the terrain 

actually placed in the tile constitutes real world terrain. In the case where a patch of rather high 

terrain is placed next to a patch of rather low terrain, serious terrain deformation may occur in 

order to smooth out the seam between the two patches of terrain. Therefore we cannot explicitly 
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say that the terrain contained in each tile is representative of real world terrain, even though real 

world exemplar data is used. 

To test whether the resultant terrain is still representative of real world terrain, an image 

comparison needs to be carried out between the synthesised tiles and the exemplar image, to see 

whether the style of terrain is still the same. Therefore a terrain style test will be conducted on 

the generated tiles and their exemplar terrains, to see if the result can still be classified as the 

same terrain type as the exemplar. 

The Grey Level Co-occurrence Matrix (GLCM) has been shown to be an effective tool to recognise 

textures and images (Beliakov, James & Troiano 2008). The GLCM is a matrix that represents how 

often different grey levels occur next to each other in an image. Given that terrain height maps 

are images, this matrix can be used to essentially test the rockiness or style of a terrain. The 

GLCM is an n x n matrix, where n is the number of grey levels used. To prevent the matrix from 

becoming too big, we only use 8 grey levels to create the matrix, rather than using the full height 

range of 255. The values contained in the matrix at each point i,j represent how often the grey 

levels i and j occur next to each other. For example, the cell 2,1 in the matrix represents how 

often the grey levels 2 and 1 occur next to each other. 

To create the GLCM, each terrain value is taken in turn, and its grey level is calculated as one of 

the eight grey levels and assigned to the value of i. Next the terrain value to its right, if one exists, 

is sorted into one of the grey levels and assigned to the value of j. Then the cell i,j is incremented 

by 1 to represent an occurrence of the grey level i next to the grey level j. Then the process 

repeats with each terrain value being compared to the terrain value to its left, if one exists, 

instead. The resultant values are then normalised by dividing each value by the total of all the 

cells. This matrix now represents the probability of two grey levels occurring next to one another. 

Once the GLCM has been obtained, we need to extract a measure from it that represents some 

overall feature of the terrain. Because we want to measure the rockiness of the terrain, we will be 

using the contrast value of the GLCM. Contrast is a measure that takes the sum of all the GLCM 

values. Values where highly different grey levels occur next to each other are given exponentially 

increasing weights, giving it an emphasis on highly differing grey level values. This causes it to be 

a good measure of rockiness in terrain. To calculate the contrast of the GLCM, we take each value 

in turn, and multiply it by a weight. The weight is obtained using the formula (i - j)2, the resultant 

function being В ὖὭ,ὮὭ Ὦ2ὲ 1
Ὥ,Ὦ= 0 , where i and j are the grey levels being compared, Pi,j is the 

probability of the grey levels occurring next to each other given by the values in each cell of the 

GLCM, and n is the number of grey levels. 

The terrain style test was carried out on 3 different types of terrain: forest, desert and mountain. 

For each terrain type 5 trials were carried out and the average GLCM contrast of all the generated 

tiles was calculated, as well as the GLCM contrast of the exemplar image used. The results of 

these trials are shown below. 

Terrain 
Type 

GLCM con 
of 
exemplar 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

Forest 1.60549 1.5073 1.57938 1.60716 1.54877 1.66849 
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Desert 1.64752 1.6498 1.65788 1.64613 1.64067 1.62601 

Mountain 1.91984 1.89573 1.90246 1.90923 1.90667 1.88599 
Table 5 Results from the GLCM contrast test 

These results show that generally the generated terrain keeps the rockiness of the exemplar 

terrain. Most of the trials came up with around the same average GLCM contrast as the GLCM 

contrast of the provided exemplar, with a few exceptions. 

Mountain terrain performed very well, with 4 of the 5 trials having contrasts closer to that of the 

mountain exemplar than the other exemplars, and each of those trials being within .01 or .02 of 

the exemplar contrast, meaning that these trials produced terrain much more like mountain than 

desert or forest. Trial 5 however had a contrast closer to that of desert terrain, meaning that it 

generated terrain with a more desert like appearance. Desert performed the best, also with 4 out 

of 5 trials having contrasts closer to that of desert than either mountain or forest, however these 

trials were generally within .01 of the exemplar desert contrast. Trial 5 had a contrast somewhere 

in the middle of forest and desert however. But for the most part the desert terrains produced 

were very similar to the original exemplar. Forest on the other hand performed quite poorly. 

Although the contrasts of 4 of 5 trials are closer to that of the forest exemplar than the desert or 

mountain exemplar, the numbers varied quite a lot. Trial 1 was a whole .1 smaller, trial 4 was .06 

smaller, and trial 5 was closer to desert terrain than forest terrain. However trial 3 was very close 

to the forest exemplar contrast, so some good results can be obtained with the forest terrain, or 

it could be that forest is not a clearly defined terrain style. 

These results show that in general the Poisson solver and terrain patch placing components of the 

system do not significantly alter the overall style of the terrain. Generated terrains still exhibit 

characteristics of their respective exemplars. There are a few results in which the generated 

terrain varies substantially from the desired exemplar. 

The results for this process could be improved by enhancing the terrain patch selection and 

cutting algorithms. If the algorithms were changed from being entirely random to intelligently 

select sections of the exemplar with similar overall heights, the results of the Poisson solver 

process would not alter the resultant terrain very much and the terrain style would match the 

exemplar much closer. 

4.7 Performance Evaluation 
One of the potential advantages that the Wang tiles system presented is the possibility of 

creating large, potentially infinite terrains on the fly as they are explored. To see if this is possible 

a number of performance tests are carried out. First we test to see how long it takes to generate 

tiles of different sizes with the system. This assesses the scalability and potential to generate large 

tiles. The time to generate complete tilesets with varying amounts of border colours show how 

the system handles generating large amounts of tiles. Measurement of the time taken to place a 

tile in the terrain represents how feasible generating extra terrain at run time really is, given that 

the complete tileset is generated beforehand. Finally the amount of memory required to hold 

tiles and tilesets of varying sizes is assessed to test the validity of pre-generating complete 

tilesets. All the results in this section were obtained on a machine running an Intel Core i5-2500 

quad-core CPU @ 3.30GHz with 8.00Gb of installed RAM. 
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The time to generate each tile is taken as the average time to generate each tile size for all tiles of 

that size generated in one trial. This time is expressed in milliseconds. The generation time 

includes placing the 4 terrain patches in the tile and smoothing the tile using the Poisson solver. 

Below is a graph to indicate the results as a measure of time over tile size (figure 16), as well as a 

table of results in table 6. For a complete list of all tile generation times for each tile generated in 

the trials, see Appendix A. 

Tile Size Average time taken to generate tile 

32 2636 

64 21940 

96 74365 

128 177096 
Table 6 Time taken to generate tiles 

 

Figure 16 Graph of times taken to generate tiles 

Tiles of size 32 are generated fairly quickly, with a tile generated in an average time of 2.6 

seconds. Tiles of size 64 generate significantly slower, taking an average of 21.9 seconds. Tiles of 

size 96 start to take over a minute to generate, with an average time of 1 minute 14 seconds. 

Tiles of size 128 start to take a significant amount of time, with an average time of nearly 3 

minutes to generate just one tile. It can be seen from the graph in figure 16 that the time to 

generate tiles increases greatly as the tile size increases. This means that larger tile sizes will 

become infeasible as the time to generate them increases at a much faster rate. 

Given the times to generate tiles, we can assess the time it will take to pre-generate a whole 

tileset given a number of border colours (n). There needs to be at least one tile for every possible 

border colour combination in order to have a tile ready to fill any space required in the grid. This 

means that a complete tileset of square tiles with 4 borders contains n4 tiles. To obtain the time 

to generate a complete tileset with n different border colours, we can multiply the number of 

tiles needed by the average time to generate a tile of the given size. These results are shown in 

the table below (table 7) and illustrated in figure 17. 
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Number of 
border colours 
(n) 

Number of Tiles 
needed (n4) 

Tile Size Avg time to 
generate tile 

Avg time to 
generate 
complete tileset 

4 256 32 2636 674816 

4 256 64 21940 5616640 

4 256 96 74365 19037440 

4 256 128 177096 45336576 

6 1296 32 2636 3416256 

6 1296 64 21940 28434240 

6 1296 96 74365 96377040 

6 1296 128 177096 229516416 

8 4096 32 2636 10797056 

8 4096 64 21940 89866240 

8 4096 96 74365 304599040 

8 4096 128 177096 725385216 

10 10000 32 2636 26360000 

10 10000 64 21940 219400000 

10 10000 96 74365 743650000 

10 10000 128 177096 1770960000 
Table 7 Times taken to generate complete tilesets 

 

Figure 17 Graph of times taken to generate complete tilesets 

From these results it can be seen that there is the potential for it to take a very long time to 

generate a complete tileset. While a tileset consisting of 4 border colours and a tile size of 32 only 

takes around 674 seconds (around 11 minutes), if greater details and less repetition are desired it 

can take much longer. A tileset with tile size of 64 with the same 4 border colours will end up 

taking around 5616 seconds (around 1 and a half hours). If more diversity is desired, the border 

colours can be increased, however this will substantially increase the time taken. If the same 64 

tile size is used with a tileset containing 8 border colours for example, it will take around 89866 

seconds, which is a bit over 1 day (around 25 hours). If the tile details needed to be further 
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increased to a tile size of 128, with 8 border colours it would take 725385 seconds, which is 

somewhere around 8 days. 

These results show that it is infeasible to generate complete tilesets on the fly. Tilesets will need 

to be pre-generated before being used in a game world being explored by a character. This could 

be avoided if a small tile size was used, and a small region of tiles generated as the world is 

loaded, with each new tile being added as the character nears the grid section containing it. For 

instance, if a tile size of 32 was used, a small 5x5 grid could be generated in around 1 minute, with 

each new tile being generated and added to the terrain in only around 2.5 seconds. However this 

approach depends on how far each terrain value represents in the game world. If each terrain 

value represents 1 metre of terrain, it may not be feasible to generate only 32m2 at a time and 

have the terrain extend far enough for the character to not notice that it is not yet generated. 

Given that it is practically infeasible to generate a complete tileset on the fly, we must test to see 

if a tileset can be pre-generated and tiles simply loaded and added to the terrain on the fly as the 

player explores the world. 

To test this, the time taken to select a suitable tile and place it in the grid was measured. For all 

trials it took an average of only 1 millisecond to check the compatibility of all the tiles in the 

tileset with the current grid point needed to fill in, choose a tile from the set of compatible tiles, 

and add that tile to the grid at the point required. This was true even for sets with 8 or more 

border colours. This means that the time needed to find a tile and place it into the terrain is very 

minimal, with only the additional time required by the engine being used to transform the 

heightmap into terrain needing to be considered. This means that as long as we can feasibly store 

a whole tileset in memory, it is highly possible to generate a very large, possibly infinte terrain on 

the fly. 

Here we will be considering the smallest amount of data needed to store a full tileset. Each tile 

contains an s x s grid of height values where s is the tile size, and 4 border colours. Each height 

value is stored as a byte in memory, with possible height values ranging from 0 to 255. Each 

border colour can be stored as a byte in memory as well, seeing as there will likely never need to 

be more than 256 border colours for a tileset, and each colour can be represented by a simple 

integer number. Therefore s2 + 4 bytes are needed to store a single tile in memory. Table 8 below 

shows the amounts of memory needed to store tilesets with different amounts of border colours 

and tile sizes. 

Number of 
border 
colours (n) 

Number of 
tiles needed 
(n4) 

Tile size (s) bytes per tile 
(s2 + 4) 

Memory 
needed 
(bytes) 

Memory 
needed 
(Megabytes) 

4 256 32 1028 263168 0.251 

4 256 64 4100 1049600 1.001 

4 256 96 9220 2360320 2.251 

4 256 128 16388 4195328 4.010 

6 1296 32 1028 1332288 1.270 

6 1296 64 4100 5313600 5.067 

6 1296 96 9220 11949120 11.396 

6 1296 128 16388 21238848 20.255 

8 4096 32 1028 4210688 4.016 
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8 4096 64 4100 16793600 16.016 

8 4096 96 9220 37765120 36.016 

8 4096 128 16388 67125248 64.016 

10 10000 32 1028 10280000 9.804 

10 10000 64 4100 41000000 39.101 

10 10000 96 9220 92200000 87.929 

10 10000 128 16388 163880000 156.288 
Table 8 memory needed to store a complete tileset 

It can therefore be seen that a small amount of memory space is required to store a complete 

tileset. Even large tilesets such as a set with 10 borders and 128 tile size can be stored in as little 

as 156 megabytes. This is highly feasible, with current systems running over 8 gigabytes of 

memory and containing terrabytes of hard disk space. 

These results show that while it may take considerable time to generate a complete tileset, they 

can be pre-generated and stored in memory. Then when certain tiles are required they can easily 

be loaded out of memory and placed on the fly, creating potentially infinite terrains in little time.  

4.8 Discussion 
Chapter 4 describes the implementation of Poisson smoothed Wang tiles for terrain generation. 

We have shown how tiles can be smoothed using the Poisson solver process, and the results of 

this process can produce potentially infinite terrains based off of an exemplar terrain, that still 

conform to the original style of the exemplar. These results are pleasing and show that Wang tiles 

has the potential to be useful in a terrain generation setting, although the process has some 

drawbacks in the way the overall terrain is constructed. 

Future work can be explored in the areas of tile borders and seams. Tile borders could be 

changed to have corner colours rather than edge colours, as discussed in section 4.4.1. Seams 

could be extended to make use of the graph-cut system to achieve better results when paired 

with the Poisson solver. The output of the system could be made more realistic if combined with 

a method to carve rivers and other natural drainage systems into the resultant terrain, so that 

flooding does not occur. 

Another potential area for future work lies in the shape of the tiles. Less regular, patterned 

terrain could be achieved by the use of irregularly shaped tiles. These tiles would need to be able 

to be placed perfectly together to form a complete continuous set. This approach could be used 

to help reduce the regularity and repetition of the final terrain. 

A method of joining different sections of terrain taken from different exemplars could be 

explored. A tile taken from a mountain exemplar and a tile taken from a desert exemplar will 

have no possible border to form a perfect continuous terrain. One possible solution to this is to 

have connection tiles that are generated to form a continuous boundary between 2 different 

types of terrain. These tiles would need to take a border from each of the terrains and solve the 

resultant terrain to form a smooth continuous surface. The issue here is that when forming the 

smooth surface, the connection tiles above and below it would need to be considered, so as to 

also form as smooth boundary between them. In this way, these connection tiles would rely on a 

starting point to create from.  
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5. Layered Tiles 
As addressed in section 2.1, there is a need for a procedural content framework, and the idea put 

forward for a layered terrain approach (Smelik, R et al. 2008). This is an area where the principles 

behind Wang tiles come in useful. This section describes a proposed Wang tiles implementation 

of the layered terrain framework. 

The idea behind the layered tiles framework is that the principle of border colours can be 

extended to include top and bottom colours for each tile. These top and bottom colours allow 

tiles to relate to tiles in the layers directly above and below them, allowing layers to be created 

with reference to the layers already implemented. We describe the implementation of a 

vegetation layer for our framework. 

5.1 Problems 
In the vegetation layer implementation presented, we need to relate the vegetation in each tile 

to the underlying terrain in the earth layer. This is because the vegetation needs to be placed 

relative to the underlying terrain in order to appear realistic. You cannot have sand on a 

mountaintop where snow should be. However to keep the principles of Wang tiles we also need 

to implement the vegetation layer so that it in itself forms an independent layer with its own 

border colours and tile configuration. However if we have vegetation placed in explicit positions 

in each vegetation tile directly based on the heights in the earth layer tiles below, there would be 

no need for tile borders relating each vegetation tile to each other. But on the other hand, if we 

have explicitly placed vegetation in the vegetation tiles, which relate to each other through 

border colours, we cannot easily relate this to the underlying terrain, which is essential for 

realism. 

5.2 Implementation 
To combat the issue presented in section 5.1 we devised the concept of a modifier tile. In this 

system, vegetation tiles simply contain parameters that define where vegetation needs to be 

placed given certain modifiers. Each tile is given a bottom and top colour in this framework. The 

modifiers are defined by the bottom colour of the tile and the border colours of the tile. The 

bottom colour of the tile relates to the underlying terrain and is an indication of the style of 

terrain, such as mountain, forest, or desert. The side colours are linked to a set of vegetation 

modifiers. 

Vegetation modifiers define what type of vegetation to place between which altitudes in the 

underlying terrain. In this way a mountainous terrain could have sections where there are bushes 

in the low ground and snow on the peaks, and other sections where there are only rocks on the 

peaks and trees in the low ground, depending on the vegetation tile placed above each section of 

the terrain. If there are multiple possible vegetation types to go at each point on the underlying 

terrain, the vegetation modifier tile chooses which type to place depending on how far the type 

of vegetation is from its respective edge on the tile. 

5.3 Results 
Below in figure 18 is an example of a mountainous terrain generated with a simple vegetation 

modifier layer. The vegetation modifier layer contains one border colour with the modifers: trees 
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placed on low ground < 100 units high, rocks placed on mid ground between 101 and 200 units, 

and snow placed on high ground> 201 units high. 

 

Figure 18 Results from the vegetation modifier tile implementation 

Here we can see vegetation appropriately placed according to the modifiers given. 

5.4 Discussion 
Chapter 5 has presented an example of a modifier tile system to implement the layered terrain 

framework. The top and bottom colours of each tile can easily be used to relate the layer to the 

layers above and below it, while maintaining the independence of the layer itself. We have shown 

a simple implementation used to populate a generated terrain with appropriate vegetation. This 

vegetation helps to add definition to the terrain and a few interesting effects can be observed. 

There are sections in the terrain where it can be seen that a terrain patch has been reused. 

However due to the nature of the Poisson seam solver smoothing out the terrain over a whole 

tile, it can be seen that this method introduces variation in the terrain, even where the same 

terrain borders appear next to each other. 
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This system could be extended to other layers such as the urban layer, with modifiers declared to 

place buildings given certain conditions. For instance a vegetation tile containing snow vegetation 

could have a white top colour representing snowy terrain. Consequently urban layer tiles with 

white bottom colours would only contain modifiers to place snow appropriate buildings such as 

igloos. 
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6. Conclusion 
This paper has discussed the implementation of a Wang tiles framework for procedural world 

generation. Following will be a summary of the content discussed, an overview of what this paper 

has contributed, and a conclusion on the work. 

6.1 Summary 
Procedural generation of game world content is designed to take the time and effort out of 

creating game worlds by using algorithms to produce the work that is usually done manually in a 

fraction of the time. Unfortunately though, this method often does not give the desired results, 

and a way of combining all the different types of terrain needs to be defined. 

Wang tiles is an image generation technique that creates a tileset of square tiles with coloured 

borders that are then placed in a grid so that tiles with matching borders are next to each other. 

This method can be related to terrain generation due to terrain being stored in images known as 

heightmaps. 

Wang tiles have been used in this work by taking an exemplar image and cutting out a diamond 

shaped section of terrain from it for each different border colour in the tileset. These patches are 

then placed onto a tile and a seam finding algorithm is performed to try to smooth out the 

boundaries between patches. The initial seam finder performed poorly so the Poisson solver was 

used to smooth the whole tile, with good results. These tiles kept the overall rockiness and style 

of their exemplar terrain well, however due to the nature of the tile construction and placement 

they tended to flood with water with no way to drain. The tiles could keep the overall style of 

their exemplars better if the patch cutting and placing algorithms are changed to be more 

intelligent. The issue of flooding can be resolved by introducing methods to form rivers and other 

water systems. 

The tilesets may take a while to create, but they take up a small space in memory and it is very 

quick and easy to place tiles on the go as a player explores the terrain, making the method ideal 

for generating large potentially infinite terrains on the fly. 

In relation to the layered terrain approach, a modifier tile implementation was presented in order 

to combat the issues faced by a multi-layer tile approach. This modifier tile implementation 

shows some promise and can easily be extended to cover all sorts of content such as vegetation 

and buildings. 

6.2 Contribution 
The paper has attempted to relate the field of Wang tiles, traditionally used for image generation, 

to the field of terrain and content generation in game worlds. This has resulted in a fast way to 

create large and varied terrain. We have also explored the use of flooding and draining terrain as 

a way to test the realism. A further contribution is in the suggestion of a layered tiling approach, 

and the modifier tile approach presented to combat the issues identified. 

6.3 Conclusion 
Wang tiles has shown to be an effective way of generating terrain. This approach is able to 

generate terrain given the user input in the form of (one or more) exemplar heightmaps. 



37 
 

The speed of tile generation is rather slow depending on the number of border colours used and 

the size of the tiles. However due to the small storage space needed for a tileset, if it is pre-

generated, potentially large, infinite terrains can be produced at very fast speed by simply loading 

tiles from memory and placing them as needed while the player explores the terrain. 

The tiles produced have been shown to retain the style of their exemplars, making the system 

good for generating true to an exemplar. Flood testing the terrain has revealed that future work 

can be done to incorporate river generating algorithms to create drainage systems for the terrain. 

Wang tiles shows potential in incorporating all elements of a game world into one framework. 

The modifier tile approach shows promise as a way to place game content onto the terrain, while 

still keeping the independence of each layer. 

The work in this paper has shown how Wang tiles can be used to procedurally generate terrain, 

and evaluate its realism. 
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Appendix A - Complete list of tile generation times 
Here is a complete list of all tile generation times from tiles generated in the performance 

evaluation testing in section 4.7. These values are expressed in milliseconds. 

Tile size 32: 
 
Tile 0: 2643 
Tile 1: 2640 
Tile 2: 2641 
Tile 3: 2638 
Tile 4: 2644 
Tile 5: 2621 
Tile 6: 2635 
Tile 7: 2622 
Tile 8: 2623 
Tile 9: 2605 
Tile 10: 2623 
Tile 11: 2636 
Tile 12: 2637 
Tile 13: 2640 
Tile 14: 2637 
Tile 15: 2636 
Tile 16: 2637 
Tile 17: 2674 
Tile 18: 2710 
Tile 19: 2652 
Tile 20: 2641 
Tile 21: 2601 
Tile 22: 2622 
Tile 23: 2621 
Tile 24: 2638 
 
 
Tile size 64: 
 
Tile 0: 22106 
Tile 1: 22158 
Tile 2: 21714 
Tile 3: 21644 
Tile 4: 21705 
Tile 5: 21718 
Tile 6: 22156 
Tile 7: 22358 
Tile 8: 22006 
Tile 9: 22305 
Tile 10: 21785 
Tile 11: 21660 
Tile 12: 22162 
Tile 13: 22373 
Tile 14: 21871 
Tile 15: 21643 
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Tile 16: 21802 
Tile 17: 21958 
Tile 18: 22101 
Tile 19: 22087 
Tile 20: 21949 
Tile 21: 22100 
Tile 22: 21873 
Tile 23: 21716 
Tile 24: 21569 
 
 
Tile size 96: 
 
Tile 0: 74221 
Tile 1: 74228 
Tile 2: 74594 
Tile 3: 74640 
Tile 4: 74453 
Tile 5: 74660 
Tile 6: 74589 
Tile 7: 74292 
Tile 8: 74273 
Tile 9: 74322 
Tile 10: 74604 
Tile 11: 73974 
Tile 12: 74103 
Tile 13: 74326 
Tile 14: 73989 
Tile 15: 74321 
Tile 16: 74302 
Tile 17: 74406 
Tile 18: 74512 
Tile 19: 74132 
Tile 20: 74470 
Tile 21: 74493 
Tile 22: 74299 
Tile 23: 74635 
Tile 24: 74292 
 
Tile size 128: 
 
Tile 0: 177074 
Tile 1: 176581 
Tile 2: 177179 
Tile 3: 177301 
Tile 4: 177981 
Tile 5: 177401 
Tile 6: 177497 
Tile 7: 177505 
Tile 8: 177078 
Tile 9: 176959 
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Tile 10: 177196 
Tile 11: 177027 
Tile 12: 177179 
Tile 13: 176901 
Tile 14: 177550 
Tile 15: 176755 
Tile 16: 176340 
Tile 17: 177143 
Tile 18: 177286 
Tile 19: 177179 
Tile 20: 176010 
Tile 21: 176765 
Tile 22: 177260 
Tile 23: 176950 
Tile 24: 177316 
 
 
 


