
Implicit and Explicit Methods of Cloth Simulation

Gavin Hayler, Shaun Bangay and Adele Lobb

Abstract

This paper examines two methods of integration used in cloth modelling, looking at
their good and bad points mainly from an implementation viewpoint. The maths behind the
methods is looked at and a way to implement the methods is presented through psuedo code.
It is concluded that the explicit methods are good for real-time speed-oriented applications,
whereas realism-oriented applications would need to use an implicit method.

1 Introduction
Cloth modelling is a highly researched area of computer graphics, and has changed much over
the past few years. Modelling cloth in a virtual world is not a trivial task, as there are many
different facets that need to be combined to provide a complete solution. This paper will be
exploring some of the different methods used within the area of cloth dynamics which involves
how the cloth moves and reacts to forces applied to it. The methods that will be explored are
explicit and implicit integration.

2 Related Work

2.1 Physical Model
A large amount of research has gone into the field of cloth simulation, and many different so-
lutions to the problem have been devised. For the most part, when developing a solution, the
researcher needs to decide on a physical model for the cloth and on an integration method.

The physical model refers to the way that the cloth or particle system is represented logically.
A number of different methods have been used in the past (EISCHEN et al. 1996; BARAFF and
WITKIN 1998), but these models have been superseded by a system of particles which is used to
represent the cloth. This method is highly intuitive since for the cloth to be drawn, it needs to be
represented as a mesh which consists of a number of vertices. Those vertex positions can then
be used as the particle positions in the system. This model is defined well by Choi et al. (CHOI

and KO 2002), who draw their model from an idea that started with Breen et al. (BREEN et al.
1994) who were first to apply a particle system to the simulation of cloth. Choi et al. (CHOI and
KO 2002) describe the model as a mesh of interconnected particles which approximate the cloth.
These particles are connected by a system of springs with certain attributes assigned to them,

1

depending on the type of interaction that the spring is dealing with (stretching or compression).
In general, variations of this physical model are now used throughout the cloth modelling field -
by game developers and CGI animators alike. (JAKOBSEN 2001; CHOI and KO 2002; ETZMUSS
et al. 2001; BREEN et al. 1994)

2.2 Integration Method
The integration method is a method which takes the forces on the particles, their velocities and
positions and calculates where the particle must move to next, and what its velocity will be.
There are mainly two methods of integration in use in the cloth simulation field - explicit and
implicit integration. For some time, explicit integration dominated the field, possibly because it
is the most obvious and intuitive solution, until Baraff and Witkin (BARAFF and WITKIN 1998)
introduced the idea of implicit integration into cloth modelling.

Explicit integration attempts to solve the system based on the information available at time t0.
The reason that the time step has to be small to maintain stability, is that there will not be any huge
changes in the system between each step which could corrupt the results (BARAFF and WITKIN
1998). The more particles that exist in the system, the smaller the time step needed to keep the
stability of the system (OSHITA and MAKINOUCHI 2001). In general, game developers try to
keep the number of vertices for each object to a minimum, making games an excellent application
for explicit integration, as shown by the explicit method used by Jakobsen (JAKOBSEN 2001) in
the physics engine for the game Hitman: Codename 47.

The new implicit method introduced by Baraff et al. (BARAFF and WITKIN 1998) allows
large time steps, and is able to handle large numbers of particles without much variance in the
running times (ie: 5%). This method is largely used for accurate simulation of high resolution
models, where the application is not intended to be real-time; namely animations.

Choi and Ko (CHOI and KO 2002) implement a variant of Baraff and Witkin’s implicit inte-
gration, and demonstrate that they are able to use a time step of up to 100 seconds and still keep
the system stable, even though the animation is choppy. However, when they use a more realistic
time step, they are able to achieve most convincing results using a clothed animated character.

3 Physical Model
The physical model that is used for this research paper is based on the model that is mentioned
in Section 2.1, that is the most widely used. Particles are used to represent the cloth vertices,
and springs are set up between certain particles. The intricasies of the model are taken from
the paper by Choi et al. (CHOI and KO 2002). In this particular model, there are two different
types of springs used in the cloth, based on the type of interaction they are attempting to model:
springs for compression and springs for stretching. The mathematical formulas for these springs
are different, because Choi et al. decided that the stretching and compression interactions were
different to warrant it, whereas often these two formulas are very similar, if not the same.

2

Figure 1: Physical Model of Cloth

3.1 Stretching
Particles that are directly adjacent to each other are used to simulate the stretching interaction,
and particles that are two particles apart, are used to simulate the compression interaction. In
Figure 1, the red lines represent the springs used to connect the adjacent particles for the pur-
pose of calculating the stretching interaction, and the blue lines represent the springs used for
compression interaction.

Therefore, each particle is connected to a number of other particles for the purpose of cal-
culating the forces acting on that particle. Each of these forces is calculated and then added
together to produce the resultant force on that particle. The stretching forces are calculated using
the following formula:

fi =

{

ks(|xij| − L)
xij

|xij |
: |xij| ≥ L

0 : |xij| < L
(1)

where ks is the spring constant, xij = xj −xi and L is the rest length of the spring (the length
when there are no forces acting on it). What this means is that a force is exerted if the current
distance between two particles is greater than the rest length between them (ie: they are being
stretched apart).

3.2 Compression
The compression interaction forces are computed with the following formula:

fi = fb(|xij|)
xij

|xij|
(2)

where

fb(|xij|) = kbκ
2(cos

κL

2
− sinc(

κL

2
))−1 (3)

and the curvature k of an arc can be expressed in terms of the distance between two points. k

can be calculated using the following formula: κ = 2
L

sinc−1(|xij |

L
), where sinc(x) = sin(x)

x
.

3

Unfortunately, since there is no useful definition for the function sinc−1(x), the best way to
use it in implementation is to create a lookup table with all the values that could be needed, and
write a function that looks up the correct value when the corresponding value is passed to it.

In real systems, geometric imperfections in the structure cause the fabric to begin buckling
when the compressive force is first applied. To model this characteristic, another function (f ∗

b) is
used in the implementation, which simulates this behaviour at small compressive forces, and as
the force increases behaves as fb would.

f ∗
b =

{

cb(|xij|) − L : fb < cb(|xij| − L)
fb : otherwise (4)

where cb is an arbitrary compression constant, similar to our spring constant ks.

3.3 Damping
One final attribute needs to be added to the model of the cloth: damping. Many models in the
past have introduced a damping term into the model in order to keep it stable, but the side-effect
of this is that the cloth begins to move unrealistically. The damping term introduced into the
model by Choi et al. is merely to model the natural property of cloth to dissipate its energy.
Without this term, the simulated cloth can move in large unrealistic oscillations.

The damping force exerted on particle i due to the interaction from particle j is shown below.

fi = −kd(vi − vj) (5)

where kd is a damping constant of our choice and vi and vj are the velocites of the two
particles. This damping force is added to every interaction force that is calculated.

3.4 Pseudo Code
A pseudo code example for the force calculations would be as follows:

Add external forces to each particle (eg: wind),
For each particle, calculate the stretching force and add a damping force before

adding it to the particle,
For each particle, calculate the compression force as done for the stretching force.
After completing this procedure for the particles, each particles contains the resultant force

that is being applied to it taking into account al types of forces.

4 Integration
Integration is the process in cloth simulation of calculating the next position that each particle
must move to and its velocity based on the forces acting upon that particle, its current position
and its current velocity. A time step is chosen beforehand, and the system is advanced from the
current point in time to the state it would be in one time step in the future. Therefore, once all the
forces have been calculated using the different interactions between the particles, these values
are then used to calculate the particles’ next position and next velocity in the integration step.

4

4.1 Explicit Integration
As was mentioned before, explicit integration was the most widely used method of integration
for some time. It is still quite widely used for certain applications for one reason - it is fast. It
is not a particularily stable method at large time steps or at large numbers of particles, but in
real-time simulations, speed is the main driving force and the models used in such applications
are usually low in detail.

The method of explicit integration that was used for this paper is a method called Verlet
integration and is taken from Jakobsen (JAKOBSEN 2001). Verlet is different from the classic
Euler integration which is defined as x

n+1 = x
n + v

n(4t) and v
n+1 = v

n + a
n(4t) where

x
n, v

n, x
n+1 and v

n+1 are the current postion and velocity and the new position and velocity
of the particle respectively, and 4t is the time step. a

n is the acceleration of the particle and
is computed using Newton’s law: f

n = ma
n where f

n is the accumulated force acting on the
particle (as computed beforehand).

Verlet, on the other hand, does not use the velocity of the particle in the calculation. Instead,
it uses the current postion x

n and the old position x
n−1 to calculate the new position.

x
n+1 = 2xn − x

n−1 + a(4t) (6)

x
n−1 = x

n (7)

Verlet integration is more stable than other explicit integration methods, because the velocity
is implicitly given through x

n − x
n−1 (the distance travelled in the previous time step), which

makes it harder for the velocity and position to get out of sync. This method is, however, not
always accurate, as energy may dissipate or leave the system, but it is fast and relatively stable.

Pseudo Code:
For each particle

Calculate next position using past and current position
Old position takes current position value
Current position takes new position value

Next particle

4.2 Implicit Integration
Implicit integration was first introduced by Baraff and Witkin (BARAFF and WITKIN 1998) in
1998 and was a revolutionary step in cloth modelling. In constrast to the explicit methods which
use current or past information about the particle to compute the next position and velocity, im-
plicit integration estimates the next position and uses that in a calculation to see if the prediction
was correct. This procedure is performed over and over until it is determined that the prediction
is correct. The implicit integration that was used in this paper was a method described by Choi
et al. (CHOI and KO 2002), which they term a semi-implicit integration method with a second-
order backward difference formula (BDF). In their formula, they use the partial differentials ∂f

∂x

and ∂f

∂v
which we approximate with f

n−f
n−1

xn−xn−1 and f
n−f

n−1

vn−vn−1 respectively. The change in position

5

and hence the next position can be calculated by solving the following equation for (xn+1 −x
n):

(I −4t
2

3
M

−1 ∂f

∂v
−4t2

4

9
M

−1 ∂f

∂x
)(xn+1 − x

n) =
1

3
(xn − x

n−1)

+
4t

9
(8vn − 2vn−1) +

4 4 t2

9
M

−1(fn −
∂f

∂v
v

n) −
2 4 t

9
M

−1 ∂f

∂v
(xn − x

n−1) (8)

If the current position x
n is added to the result, it will produce the next position x

n+1. Using
the next position, we are then able to calculate the following velocity v

n+1 by solving

v
n+1 =

1

4t
(
3

2
x

n+1 − 2xn +
1

2
x

n−1) (9)

In the implementation, the change in position and the change in velocity is stored on each iter-
ation and a new value is calculated each time. This process continues until the two values are
within a pre-defined limit of each other, which then causes the program to break out of the loop.

Pseudo Code:
For each particle

Reset delta values
Do

Calculate delta position and delta velocity
Until difference between the old and new delta values is within a tolerable range
New particle position and velocity calculated from delta values and assigned to particle

Next particle
In the above psuedo code, the delta values refer to the change in position (xn+1 − x

n) and
the change in velocity (vn+1 − v

n).

5 Results
Figure 2 contains the results of the tests done for the explicit or verlet integration. The grid size
refers to the number of particles in the system (ie: a 5 particle by 5 particle square grid); the FPS
is the number of frames that were able to be rendered per second; and the stable timestep is the
highest value that could be used as the timestep while still keeping the system stable.

As one can see from Figure 2, as the number of particles in the system increases, the frames
per second (FPS) stays the same until the point at which the video card is no longer the bottle neck
of the application, at which point the FPS decreases rapidly as the work continues to increase.The
stable timestep value decreases almost linearly as the number of particles increase.

6 Conclusion
The explicit method that has been examined in this paper is surprisingly stable, as can be seen
from Section 5, and would be most useful in an application where there are not going to be many
particles in the system. Such an application would perhaps be a computer game, where models

6

Figure 2: Explicit Integration Results

tend to be kept to as low a detail as possible to keep speed high. However, for use in an offline
rendering environment, where high detail models are the norm, this method of integration would
not be as well suited. A better method would be a highly stable method, such as the implicit
method reviewed here.

References
BARAFF, DAVID and A. WITKIN (1998). Large steps in cloth simulation. In Proceedings of

the 25th annual conference on Computer graphics and interactive techniques (1998), ACM
Press, pp. 43–54.

BREEN, D. E., D. H. HOUSE and M. J. WOZNY (1994). Predicting the drape of woven cloth
using interacting particles. Proceedings of SIGGRAPH 1994 (1994), pp. 365–372.

CHOI, KWANG-JIN and H.-S. KO (2002). Stable but responsive cloth. In Proceedings of the
29th annual conference on Computer graphics and interactive techniques (San Antonio,
Texas, 2002), San Antonio, Texas, ACM Press, pp. 604–611.

EISCHEN, J. W., S. DENG and T. G. CLAPP (1996). Finite-element modelling and control of
flexible fabric parts. IEEE Computer Graphics and Applications 16, 5 (1996), pp. 71–80.

ETZMUSS, OLAF, M. HAUTH, M. KECKEISEN, S. KIMMERLE, J. MEZGER and M. WACKER
(2001). A cloth modelling system for animated characters. Tech. rep., Wilhelm-Schickard-
Institut für Informatik, Graphisch-Interaktive Systeme, Universität Tü, 2001.

JAKOBSEN, THOMAS (2001). Advanced character physics. In Proceedings of Game Developer’s
Conference (San Jose, 2001), San Jose.

OSHITA, M. and A. MAKINOUCHI (2001). Real-time cloth simulation with sparse particles and
curved faces. In Proceedings of Computer Animation 2001 (November 2001), pp. 220–227.

7

